11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


ce.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall/Spring
Prerequisites
None
Course Language
Course Type
Elective
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Will be able to analyze problems faced in certainty, uncertainty and risk environments
  • Will be able to develop decision trees to find rational solutions for problems under uncertainty and risk environments
  • Will be able to calculate the value of information
  • Will be able to use fundamentals of the utility theory
  • Will be able to analyze different solution aspects of multicriteria problems
  • Will be able to use fundamental approaches of goal programming
Course Description

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Introduction to Decision Theory. Decision making under certainty. Decision making under uncertainty.
2 Decision making under risk.
3 Utility Theory. Single attribute utility. Interpreting utility functions.
4 Kurban Bayramı
5 Utility functions for nonmonetary attributes. The axioms of utility.
6 Attitudes towards risk.
7 Risk premium.
8 Midterm
9 Using additional information. Expected value of sample information. Expected value of perfect information.
10 Decision making without experimentation. Decision making with experimentation.
11 Multicriteria Decision Making. Goal Programming.
12 Multi Attribute Utility Functions.
13 Analytic Hierarchy Process.
14 Outranking relations.
15 Review
16 Review of the Semester  
Course Notes/Textbooks Lecture Notes
Suggested Readings/Materials 1. Robert T. Clemen, Terence Reilly, Making Hard Decisions With Decision Tools, Duxbury Thomson Learning, 2001; ISBN13: 9780495015086; ISBN10: 0495015083. 2. Wayne L. Winston, Operations Research. Applications and Algorithms, Duxbury Press, Belmont, California, 1994.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
5
Laboratory / Application
Field Work
Quizzes / Studio Critiques
4
20
Portfolio
Homework / Assignments
2
10
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
1
30
Final Exam
1
35
Total

Weighting of Semester Activities on the Final Grade
65
Weighting of End-of-Semester Activities on the Final Grade
35
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
15
2
Field Work
Quizzes / Studio Critiques
4
3
Portfolio
Homework / Assignments
2
5
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
11
Final Exams
1
12
    Total
123

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

Adequate knowledge in Mathematics, Science and Computer Engineering; ability to use theoretical and applied information in these areas to model and solve Computer Engineering problems

X
2

Ability to identify, define, formulate, and solve complex Computer Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose

X
3

Ability to design a complex computer based system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose

X
4

Ability to devise, select, and use modern techniques and tools needed for Computer Engineering practice

X
5

Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Computer Engineering problems

X
6

Ability to work efficiently in Computer Engineering disciplinary and multi-disciplinary teams; ability to work individually

7

Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages

8

Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself

9

Awareness of professional and ethical responsibility

10

Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development

11

Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Computer Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010